Synthesis of Ordered Mesoporous CuO/CeO2 Composite Frameworks as Anode Catalysts for Water Oxidation

نویسندگان

  • Vassiliki Ι. Markoulaki
  • Ioannis T. Papadas
  • Ioannis Kornarakis
  • Gerasimos S. Armatas
چکیده

Cerium-rich metal oxide materials have recently emerged as promising candidates for the photocatalytic oxygen evolution reaction (OER). In this article, we report the synthesis of ordered mesoporous CuO/CeO₂ composite frameworks with different contents of copper(II) oxide and demonstrate their activity for photocatalytic O₂ production via UV-Vis light-driven oxidation of water. Mesoporous CuO/CeO₂ materials have been successfully prepared by a nanocasting route, using mesoporous silica as a rigid template. X-ray diffraction, electron transmission microscopy and N₂ porosimetry characterization of the as-prepared products reveal a mesoporous structure composed of parallel arranged nanorods, with a large surface area and a narrow pore size distribution. The molecular structure and optical properties of the composite materials were investigated with Raman and UV-Vis/NIR diffuse reflectance spectroscopy. Catalytic results indicated that incorporation of CuO clusters in the CeO₂ lattice improved the photochemical properties. As a result, the CuO/CeO₂ composite catalyst containing ~38 wt % CuO reaches a high O₂ evolution rate of ~19.6 µmol·h-1 (or 392 µmol·h-1·g-1) with an apparent quantum efficiency of 17.6% at λ = 365 ± 10 nm. This OER activity compares favorably with that obtained from the non-porous CuO/CeO₂ counterpart (~1.3 µmol·h-1) and pure mesoporous CeO₂ (~1 µmol·h-1).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasonic Assisted Synthesis and Characterization of xCuO/CeO2–γAl2O3 Nanoatalysts

In this paper, xCuO/CeO2–γAl2O3 nano-catalysts were successfully synthesized by precipitation from an aqueous solution which modified via ultrasonic waves. For characterization of xCuO/CeO2–γAl2O3 samples N2 adsorption results showed that the BET surface area of the CuO/CeO2–γAl2O3, X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-rays (EDX dot-mapping) were u...

متن کامل

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

CeO2-MO x (M = Cu, Co, Ni) composite yolk-shell nanospheres with uniform size were fabricated by a general wet-chemical approach. It involved a non-equilibrium heat-treatment of Ce coordination polymer colloidal spheres (Ce-CPCSs) with a proper heating rate to produce CeO2 yolk-shell nanospheres, followed by a solvothermal treatment of as-synthesized CeO2 with M(CH3COO)2 in ethanol solution. Du...

متن کامل

Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO and Volatile Organic Compounds (VOCs)

Gold nanoparticles, particularly with the particle size of 2–5 nm, have attracted increasing research attention during the past decades due to their surprisingly high activity in CO and volatile organic compounds (VOCs) oxidation at low temperatures. In particular, CO oxidation below room temperature has been extensively studied on gold nanoparticles supported on several oxides (TiO2, Fe2O3, Ce...

متن کامل

Comparative Study of Various Preparation Methods of CuO –CeO2 Catalysts for Oxidation of n–Hexane and iso–Octane

The complete oxidation of n-Hexane and iso-Octane was studied individually in a fixed bed tubular flow reactor over CuO-CeO2 catalysts synthesized via four different methods namely urea-nitrate combustion method, urea gelation/co-precipitation method, citric acid sol-gel method and co-impregnation method. Laser diffraction was employed in catalysts characterization. The results obtained from th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015